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Abstract— The binomial and the Poisson distributions are
shown to be maximum entropy distributions of suitably de-
fined sets. Poisson’s law is considered as a case of entropy
maximation, and also convergence in information divergence
is established.
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I. INTRODUCTION

We shall use I1(A) to denote the Poisson distribution
with mean A, and b(n,p) to denote the binomial distribu-
tion with parameters (n,p). We will not distinguish be-
tween a random variable and its distribution in the no-
tation. Let X, Xa,---,X, be a sequence of indepen-
dent Bernoulli random variables i.e. random variables
with range {0,1}. Define the success probabilities by p; =
P(Xi = 1), A= Z;Lpi, Pmax — max; p; and Sn = Z’f Xi.
We call S, a n—generalized binomial distribution and de-
note by By (A\) the set of n—generalized binomial distri-
butions with mean A. Define the set of generalized bino-
mial distributions Boo (\) as the union |J B, () of all n-
generalized binomial distributions.

Let P and @ be probability measures on {0,1,2,---}
with point probabilities p; and ¢;, ¢ = 0,1,2,---. Then the
total variation between the distributions is defined as

1P =QlII=>_Ipi—ail ,
=0
and the information divergence is defined as
- bi
DPIQ =3 pilos:.
i=0 ¢

The basic properties of the information divergence are de-
scribed for instance in [1].

The convergence of the point probabilities of b (n, %) to
the point probabilities of II(\) was established by Pois-
son. Convergence in total variation was studied by Pro-
horov [2] for the binomial distribution. Convergence of
more general distributions are studied in [3], [4], [5] and
[6]. See Steele [7] for a survey on the subject and further
references. Information divergence does not define a met-
ric but is related to total variation via Pinsker’s inequalily
P - Q| < D(P || Q) proved by Csiszér [8] and others.
If (Qn),cy is a sequence of probability distributions, we
say that (Qn),,cy converges to Q in information divergence
it D(Qs, || Q) — 0 for n — co. In section 2 it is shown that
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b (n, %) converges to II(A) in information divergence, and
the proof is at least as simple as the proof of convergence
in total variation. Pinsker’s inequality shows that conver-
gence in information divergence is a stronger condition than
convergence in total variation. The use of information di-
vergence also fits better together with the idea of maximum
likelihood estimation known from statistics.
The entropy of P is defined by

H(P)==> pilogp; .
=0

If ©Q is a set of distributions we define H(Q) =
Suppeq (H (P)).

In section 3 it is shown that both the binomial distribu-
tions and the Poisson distributions are maximum entropy
distributions on sets of generalized binomial distributions.
Also Poisson’s law is shown to be closely related to the
maximum entropy principle in the sense that Poisson’s law
can be formulated as “the entropy increases to its max-
imum”. In this sense these results are closely related to

results about the central limit theorem obtained by Barron
in [9] and Takano in [10].

II. POISSON’S LAW

Assume X; and X3 are independent Poisson distributed
random variables with intensities A and u. Then X7 4+ X3 is
a Poisson distributed random variable with intensity A+ p,
which shows that Poisson distributions are infinitely divisi-
ble. Let X be a random variable with values in {0,1,2,--- }
and with point probabilities p;. Then

)

:A+§:pjlog <i—l> — H (X)

=A—F(X)logA+ E (log(X!)) — H(X) ,

D(X |[TL(\)) = > _p;log (A_J;A
j=0 5T

and the derivative with respect to A is 1 — @ . There-
fore D (X || IL(N)) is minimal for A = F (X). Equivalently,
A = E(X) is the maximum likelihood estimate given an
empirical distribution according to X. Now it is convenient
to define D (X) = miny D (X || IL()N)) . If total variation is
used to measure the difference between the distributions,
the maximum likelihood estimate is not the nearest distri-
bution. In [11], [12] and [13] bounds on the total variation
between the distribution of X and the nearest Poisson dis-
tribution are given.



Lemma 1: For independent random variables X7 and Xo
we have

D(X1 —|—X2) < D(Xl) + D (Xg) . (1)

Proof: First we observe that

D(X1) + D (Xz) = D(Xy [[ IL(M)) + D (Xz [ TT(A2))
= D (X1, X2) || (A1), IT(A2)))

where I1(A;) and II(A2) are considered as independent
Poisson distributions. The inequality (1) is obtained by
data reduction of the map (Xy, X2) — X1 + Xo. [ |

Theorem 2: Let X1, Xa... X, be a sequence of indepen-
dent Bernoulli random variables. Define p; = P (Xi = 1) ,
A=3Y"p;and S, =" X; . Then

i=1

Proof: We have

(ot ) e ()

(

( —pl)ln(l—pl)—l—pl
(L=pi) (=pi) +pi
p

D(Xi) =

IA

and therefore

D(S,) < Zn:D(X
1=1
< zn:p? :
1=1

]
We see that if A is fixed and pmax converges to O then
D (S,) converges to 0, which is Poisson’s law. If the
Bernoulli random variables are identically distributed we
get D (Sy) < APmax = %2
Remark 8: The bound can easily be improved by use of
the inequality

D(X;) =1 —pi)In(l—p;) +pi

2
by b
<(1—pi) <— i—?—§>+pi

III. MAXIMUM ENTROPY DISTRIBUTIONS

In order to study the entropy of generalized binomial
distributions, we need the following lemma which is a
strengthening of a result obtained by Shepp and Olkin [14,

Lemma 1]. Basically we use the same proof technique as
these authors. We shall need the elementary symmetric
functions

Sp(x1,Ta,. .. ) = Z Ty * Loy ST

1< <i2<... <t <n

defined for z1 > 0,22 > 0,...
satisfy the following inequalities

,Zn > 0. These functions

(2)

s sl < (s7)”

A proof of (2) can be found in [15, Section 2.22].

Lemma 4: The entropy H (Sy,) is a strictly concave func-
tion of pi,p; ¢ # j when all other probabilities pp, &k # 7, J
are kept fixed and F (5,) is fixed.

Proof: Without loss of generality we can assume that

1 = 1 and 7 = 2. When the other probabilities are kept
fixed we have p1 + po = k for some constant k. Define

t = p1 — 5. We have to show that dtZH(Sn) < 0. The
dlstrlbutlon of X1 + X3 is given by the point probabilities

(p1p2,p1 (L —p2) + (1 —p1) p2, (1 —p1) (1 — p2))
k2 k2 E\2
= ——t}k——+22(1—-=) —¢2].
4 2 2

Therefore the distribution of S, is an affine function of 2.
Put 4 = 2. Then we have

a2 d (du d
ZHGS)==—(=.ZH(s,
di2 (5n) dt(dt du ( )>
d du\? 2
_2~%H(Sn)+<a> (s H (Sh)

The last term is negative by concavity of the entropy func-
tion. We shall show that also the first term %H (Sn) is
less than or equal to 0.

Define b = P (Xg +---

k2 k2
:<Z_u>bl 2+<k—?+2u>b
2
k
1—=] — b
+(< 2) U) )

+ X, =1). Then we have



and get

%H (Sn) = —% (ZZ:P(Sn =1)log P (S, = z))

:—Z%(logp(sn:l)—l—l)

= Z (_bl72 +2b;_1 — bl) IOgP(Sn = l)
l

s (P(Sn:l)~P(Sn:l+2)> "

P(S,=1+1)*

b1 P2
L—pi' 1—pg’

n Prn
8 ...,1_pn>~1;[(1—pk),

and using (2) gives

P(Sy,=1)-P(S, =1+2)
P(S,=1+1)*

s . s
_ZL % g

(st)” ~

?

which shows that

|

The lemma gives more evidence to the following conjec-
ture stated by Shepp and Olkin [14, page 4]:

Congecture 5: The entropy H (S,,) is a concave function

of the vector (p1,p2, -+ ,Pn)-
Theorem 6: If m = {%%J, then

A
H(S,)>H([b[m,=
m

Proof: Let K be the set of n-generalized binomial dis-
tributions with mean A, with success probabilities ¢; and
with gmax < % Then there exists a generalized binomial
distribution R € K with success probabilities r; where
H (R) = minpeg H (P). I there were 2 success proba-
bilities 7; and 7; in ]0; %[ with ¢ # 7, then the generalized
binomial distribution with the same success probabilities
except r; replaced by 7; ¢ and r; replaced by 7; F& would
have lower entropy than R for some small number €. There-
fore there is at most one success probability in ]0; %[
Assume 7; € ]0; %[ Let I be the number of success prob-
abilities r; with r; = % Then we have l% +7; = A which
is not possible. Therefore all r; € {0, %} and R is a bino-
mial distribution with parameters (m, %) , and the result
follows. |

Theorem 7: The binomial distribution b (n,2) is the
maximum entropy distribution in B, (}), and for A fixed
H (b (n, %)) is increasing and

H(b <n%>> ' H (Boo (V) for n— 0.

Proof:  There exists a n-generalized binomial dis-
tribution R with success probabilities 7; where H (R) =
H (B, (A\). By lemma (4) and symmetry we have that
r; = r; for all 4,j. Therefore R is a binomial distribu-
tion with parameters (n,%) To see that the sequence
(H (b (n, %)))nGN is increasing we note that the sequence
of sets (Bp (N)),, e is increasing. |

Theorem 8: The Poisson distribution II(\) satisly

H(IL(N)) = H (Boo (V) -

Proof: The geometric distribution is the maximum
entropy distribution among distributions with mean A (see
[16]), so the Poisson distribution has entropy less than the
entropy of the geometric distribution, which is finite.

We have to show that

H(b <n%>> — H{IT(V) for n— oo

We know that D (b (n, %) I H()\)) — 0 for n — oo, which
implies b (n, %,j) — II(\,j) for n — oo for all j. Further
we have

H <b <n %)) +D (b (n %))
— _ib <n %j) log (IL (A, 7))

so 1t is sufficient to show that
s A
-> <n E,j) log (TT (X, 7)) — H (TL(\)) for n — 0o .
=0

Now,

() () ()

n! by
< Wi exp (—A) - exp (A)

<IN J) -exp (V)

and therefore
A . . .
b (n 5,3) log (I (\,9)) < —exp () T (A, ) Tog (11 (A, 7)),

which is an integrable upper bounding function with re-
spect to the counting measure. |

Remark 9: None of the sets B (A, n = 2,3,4,---00
are convex. If the sets By, (A) had been convex, we could
have used theorem (7) together with general results on en-
tropy maximization obtained by Topsge and others [16],
[17], [18] to conclude that b (n, 2) converges to a distribu-
tion in ¢l (Bs (A)) in information divergence, without use
of the results in section 2.
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